Test Code CCMGG Comprehensive Cardiomyopathy Gene Panel, Varies
Ordering Guidance
Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH/ Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.
Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.
Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.
Necessary Information
Prior Authorization is available, but not required, for this test. If proceeding with the prior authorization process, submit the required form with the specimen.
Specimen Required
Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.
Specimen Type: Whole blood
Container/Tube:
Preferred: Lavender top (EDTA) or yellow top (ACD)
Acceptable: Any anticoagulant
Specimen Volume: 3 mL
Collection Instructions:
1. Invert several times to mix blood.
2. Send whole blood specimen in original tube. Do not aliquot.
Specimen Stability Information: Ambient (preferred)/Refrigerated
Forms
1. New York Clients-Informed consent is required.
Document on the request form or electronic order that a copy is on file.
The following documents are available:
-Informed Consent for Genetic Testing (T576)
-Informed Consent for Genetic Testing (Spanish) (T826)
2. Hereditary Cardiomyopathies and Arrhythmias Patient Information
3. Comprehensive Cardiomyopathy Panel (CCMGG) Prior Authorization Ordering Instructions
4. If not ordering electronically, complete, print, and send a Cardiovascular Test Request Form (T724) with the specimen.
Secondary ID
617183Useful For
Providing a genetic evaluation for patients with a personal or family history suggestive of a hereditary form of cardiomyopathy
Establishing a diagnosis of a hereditary form of cardiomyopathy
Special Instructions
- Informed Consent for Genetic Testing
- Hereditary Cardiomyopathies and Arrhythmias: Patient Information
- Informed Consent for Genetic Testing (Spanish)
- Targeted Genes and Methodology Details for Comprehensive Cardiomyopathy Gene Panel
- Comprehensive Cardiomyopathy Panel (CCMGG) Prior Authorization Ordering Instructions
Method Name
Sequence Capture and Targeted Next-Generation Sequencing followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing.
Reporting Name
Comprehensive Cardiomyopathy PanelSpecimen Type
VariesSpecimen Minimum Volume
1 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Varies | Varies |
Reject Due To
All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.Clinical Information
Cardiomyopathies are a group of disorders characterized by disease of the heart muscle. Cardiomyopathy can be caused by either inherited, genetic factors or nongenetic (acquired) causes, such as infection or trauma. When the presence or severity of the cardiomyopathy observed in a patient cannot be explained by acquired causes, genetic testing for the inherited forms of cardiomyopathy may be considered. Overall, cardiomyopathies are some of the most common genetic disorders. The inherited forms of cardiomyopathy include hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), arrhythmogenic right ventricular cardiomyopathy (ARVC or AC), and left ventricular noncompaction (LVNC).(1)
The hereditary form of HCM is characterized by left ventricular hypertrophy in the absence of other cardiac or systemic causes that may cause hypertrophy of the heart muscle, such as longstanding, uncontrolled hypertension or aortic stenosis. The incidence of HCM in the general population is approximately 1:200 to 1:500, and it is estimated that 30% to 60% of cases can be attributed to a genetic etiology.(2) Hereditary forms of HCM are most often caused by genes encoding proteins of the cardiac sarcomere, the functional contractile unit of the heart muscle.
Hereditary forms of DCM are characterized by ventricular dilation with reduced cardiac performance in the absence of other cardiac or systemic causes that may cause dilation of the heart muscle, such as hypertension and ischemic heart disease. The incidence of DCM in the general population is approximately 1 in 2500, and it is estimated that approximately 50% of cases can be attributed to a genetic etiology.(3) Hereditary forms of DCM are most often caused by genes encoding proteins of the cardiac cytoskeleton and sarcomere.
LVNC is characterized by prominent trabeculations of the left ventricle with trabecular recesses extending into the ventricular cavity. The incidence of LVNC in the general population is estimated to be 1 in 5000.(3) It is currently unclear if LVNC represents a genetically distinct form of cardiomyopathy, as many familial cases of LVNC have been linked to the same genes associated with other forms of hereditary cardiomyopathies and many affected individuals also meet diagnostic criteria for DCM or HCM.(3,4)
Arrhythmogenic cardiomyopathy (ACM) is characterized by the presence of arrhythmogenic cardiac muscle in the absence of ischemic, hypertensive, or valvular cardiac disease. ARVC, the most well-defined form of ACM, is characterized by the breakdown of the myocardium and replacement of right ventricular muscle tissue with fibrofatty tissue, resulting in an increased risk of arrhythmia and sudden death. In some cases, there may also be left ventricular involvement. The prevalence of ARVC (genetic and acquired) is estimated to be 1 in 2000 to 1 in 5000 in the general population.(5)
Hereditary forms of cardiomyopathy may be an isolated finding or may be a feature of an underlying systemic condition. Hereditary forms of cardiomyopathy can follow autosomal dominant, autosomal recessive, X-linked, and digenic patterns of inheritance. Mitochondrial inheritance is also possible, however, genes associated with mitochondrial inheritance of cardiomyopathy are not assessed on this panel.
Reference Values
An interpretive report will be provided.
Interpretation
All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(6) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.
Method Description
Next-generation sequencing (NGS) and/or Sanger sequencing is performed to test for the presence of variants in coding regions, and intron/exon boundaries of the genes analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated at above 99% for single nucleotide variants, above 94% for deletion-insertions (delins) less than 40 base pairs (bp), and above 95% for deletions up to 75 bp and insertions up to 47 bp. NGS and/or a polymerase chain reaction-based quantitative method is performed to test for the presence of deletions and duplications in the genes analyzed.
There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. See Targeted Genes and Methodology Details for Comprehensive Cardiomyopathy Gene Panel for details regarding the targeted genes analyzed for each test and specific gene regions not routinely covered.(Unpublished Mayo method)
Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria.
Genes analyzed: ABCC9, ACAD9, ACADVL, ACTC1, ACTN2, AGL, ALMS1, ALPK3, BAG3, BRAF, CDH2, CPT2, CRYAB, CSRP3, DES, DMD, DNAJC19, DOLK, DSC2, DSG2, DSP, ELAC2, EMD, FHL1, FKRP, FKTN, FLNC, GAA, GLA, HCN4, HRAS, JPH2, JUP, KRAS, LAMP2, LMNA, LZTR1, MAP2K1, MAP2K2, MRAS, MTO1, MYBPC3, MYH7, MYL2, MYL3, MYLK3, MYPN, NEXN, NKX2-5, NRAS, PCCA, PCCB, PKP2, PLN, PPA2, PPCS, PRDM16, PRKAG2, PTPN11, RAF1, RBM20, RIT1, RYR2, SCN5A, SGCD, SHOC2, SLC22A5, SOS1, SOS2, TAZ (TAFAZZIN), TBX20, TCAP, TMEM43, TMEM70, TNNC1, TNNI3, TNNI3K, TNNT2, TPM1, TRIM63, TTN, TTR, and VCL
Day(s) Performed
Varies
Performing Laboratory
Mayo Clinic Laboratories in RochesterTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
81439
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
CCMGG | Comprehensive Cardiomyopathy Panel | 51966-0 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
617184 | Test Description | 62364-5 |
617185 | Specimen | 31208-2 |
617186 | Source | 31208-2 |
617187 | Result Summary | 50397-9 |
617188 | Result | 82939-0 |
617189 | Interpretation | 69047-9 |
617190 | Additional Results | 82939-0 |
617191 | Resources | 99622-3 |
617192 | Additional Information | 48767-8 |
617193 | Method | 85069-3 |
617194 | Genes Analyzed | 48018-6 |
617195 | Disclaimer | 62364-5 |
617196 | Released By | 18771-6 |
Prior Authorization
Insurance preauthorization is available for this testing; forms are available.
Patient financial assistance may be available to those who qualify. Patients who receive a bill from Mayo Clinic Laboratories will receive information on eligibility and how to apply.