Test Code HCHLG Hypercholesterolemia Gene Panel, Varies
Ordering Guidance
Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.
Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.
Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.
Necessary Information
Prior Authorization is available, but not required, for this test. If proceeding with the prior authorization process, submit the required form with the specimen.
Specimen Required
Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.
Specimen Type: Whole blood
Container/Tube:
Preferred: Lavender top (EDTA) or yellow top (ACD)
Acceptable: Any anticoagulant
Specimen Volume: 3 mL
Collection Instructions:
1. Invert several times to mix blood.
2. Send whole blood specimen in original tube. Do not aliquot.
Specimen Stability Information: Ambient (preferred)/Refrigerated
Forms
1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file.
The following documents are available:
-Informed Consent for Genetic Testing (T576)
-Informed Consent for Genetic Testing (Spanish) (T826)
2. Hereditary Dyslipidemia Patient Information
3. Hypercholesterolemia Gene Panel (HCHLG) Prior Authorization Ordering Instructions
4. If not ordering electronically, complete, print, and send a Cardiovascular Test Request Form (T724) with the specimen.
Secondary ID
617267Useful For
Providing a genetic evaluation for patients with a personal or family history suggestive of familial hypercholesterolemia (FH), sitosterolemia, or other monogenic forms of inherited hypercholesterolemia
Establishing a diagnosis of FH, sitosterolemia, or other monogenic forms of inherited hypercholesterolemia
Special Instructions
Method Name
Sequence Capture and Targeted Next-Generation Sequencing (NGS) followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing.
Reporting Name
Hypercholesterolemia Gene PanelSpecimen Type
VariesSpecimen Minimum Volume
1 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Varies | Varies |
Reject Due To
All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.Clinical Information
Hypercholesterolemia, characterized by elevated cholesterol levels in the blood, can be an inherited (genetic) condition or can be acquired due to either lifestyle factors such as diet or exercise or an underlying medical condition. The genetic influence on cholesterol levels can be complex, with monogenic (single gene) or polygenic (many genes) etiologies. This gene panel assesses for monogenic causes of hypercholesterolemia only.
Autosomal dominant familial hypercholesterolemia (FH) is the most common inherited hypercholesterolemia condition and is characterized by elevated levels of low-density lipoprotein cholesterol (LDL-C), leading to increased risk of premature cardiovascular disease and myocardial infarction. Affected individuals may also exhibit xanthomas that worsen with age. The majority of cases of FH are due to loss-of-function variants in the LDLR gene, but FH can also be caused by loss-of-function variants in the APOB gene or gain-of-function in the PCSK9 gene.(1,2) The most common form of FH is autosomal dominant heterozygous familial hypercholesterolemia (heFH) caused by single, heterozygous variants in LDLR, APOB, or PCSK9, but a more severe form of FH, homozygous FH (hoFH), results when an individual inherits two variants in one of the three associated genes, either in the homozygous or compound heterozygous state.(1,2) Recent studies suggest that the prevalence of heFH is as high as 1:200 to 1:250, and the prevalence of hoFH is between 1:160,000 to 1:250,000.(1,2)
Autosomal recessive FH, due to biallelic (homozygous or compound heterozygous) variants in the LDLRAP1 gene is a rare form of inherited hypercholesterolemia and is typically characterized by LDL-C levels above 400 mg/dL as well as cutaneous and tendon xanthomas. While LDLRAP1-associated hypercholesterolemia is rare, emerging evidence suggests heterozygous carriers of disease-causing LDLRAP1 variants may also present with hypercholesterolemia.(3,4,5,6)
Sitosterolemia is a rare, autosomal recessive inherited lipid metabolism disease caused by biallelic variants in the ABCG5 or ABCG8 genes. The condition is characterized by increased intestinal absorption of plant sterols and has similar clinical manifestations to familial hypercholesterolemia, including elevated LDL-C, xanthomas, increased risk of premature cardiovascular disease, and increased risk of myocardial infarction. The prevalence of sitosterolemia has not been well established.(7)
Other, more rare genetic conditions that may present with elevated cholesterol levels include autosomal recessive lysosomal acid lipase deficiency due to variants in the LIPA gene; autosomal dominant hyperalphalipoproteinemia due to variants in the CETP gene; autosomal recessive lipoprotein lipase deficiency due to variants in the LPL gene; and atypical autosomal dominant hypercholesterolemia due to variants in the APOE gene.(8) In addition, emerging evidence suggests that the LRP6 gene may be associated with autosomal dominant coronary artery disease, a condition in which hypercholesterolemia is a feature.(9,10)
Cerebrotendinous xanthomatosis is a rare, autosomal dominant condition caused by disease-causing variants in the CYP27A1 gene. Individuals with cerebrotendinous xanthomatosis do not typically have elevated plasma cholesterol levels but do have clinical manifestations that overlap with hypercholesterolemia conditions, including xanthomas and increased risk for premature cardiovascular disease and myocardial infarction.(11)
Reference Values
An interpretive report will be provided.
Interpretation
All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(12) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.
Method Description
Next-generation sequencing (NGS) and/or Sanger sequencing are performed to test for the presence of variants in coding regions and intron/exon boundaries of the genes analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated at above 99% for single nucleotide variants, above 94% for deletions-insertions (delins) less than 40 base pairs (bp), above 95% for deletions up to 75 bp and insertions up to 47 bp. NGS and/or a polymerase chain reaction -based quantitative method is performed to test for the presence of deletions and duplications in the genes analyzed.
There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. See Targeted Genes and Methodology Details for Hypercholesterolemia Gene Panel or details regarding the targeted genes analyzed for each test and specific gene regions not routinely covered.(Unpublished Mayo method)
Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria.
Genes analyzed: ABCG5, ABCG8, APOB, APOE, CETP, CYP27A1, LDLR, LDLRAP1, LIPA, LPL, LRP6, and PCSK9
Day(s) Performed
Varies
Performing Laboratory
Mayo Clinic Laboratories in RochesterTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
81406 x2
81407
81479
81479 (if appropriate for government payers)
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
HCHLG | Hypercholesterolemia Gene Panel | 51966-0 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
617268 | Test Description | 62364-5 |
617269 | Specimen | 31208-2 |
617270 | Source | 31208-2 |
617271 | Result Summary | 50397-9 |
617272 | Result | 82939-0 |
617273 | Interpretation | 69047-9 |
617274 | Additional Results | 82939-0 |
617275 | Resources | 99622-3 |
617276 | Additional Information | 48767-8 |
617277 | Method | 85069-3 |
617278 | Genes Analyzed | 48018-6 |
617279 | Disclaimer | 62364-5 |
617280 | Released By | 18771-6 |
Prior Authorization
Insurance preauthorization is available for this testing; forms are available.
Patient financial assistance may be available to those who qualify. Patients who receive a bill from Mayo Clinic Laboratories will receive information on eligibility and how to apply.