Test Code HHTGG Hereditary Hemorrhagic Telangiectasia and Vascular Malformations Gene Panel, Varies
Ordering Guidance
Customization of this panel and single gene analysis for any gene present on this panel are available. For more information see CGPH / Custom Gene Panel, Hereditary, Next-Generation Sequencing, Varies.
Targeted testing for familial variants (also called site-specific or known mutations testing) is available for the genes on this panel. See FMTT / Familial Variant, Targeted Testing, Varies. To obtain more information about this testing option, call 800-533-1710.
Shipping Instructions
Specimen preferred to arrive within 96 hours of collection.
Necessary Information
Prior Authorization is available, but not required, for this test. If proceeding with the prior authorization process, submit the required form with the specimen.
Specimen Required
Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.
Specimen Type: Whole blood
Container/Tube:
Preferred: Lavender top (EDTA) or yellow top (ACD)
Acceptable: Any anticoagulant
Specimen Volume: 3 mL
Collection Instructions:
1. Invert several times to mix blood.
2. Send whole blood specimen in original tube. Do not aliquot.
Specimen Stability Information: Ambient (preferred)/Refrigerated
Forms
1. New York Clients-Informed consent is required. Please document on the request form or electronic order that a copy is on file.
The following documents are available:
-Informed Consent for Genetic Testing (T576)
-Informed Consent for Genetic Testing (Spanish) (T826)
2. Hereditary Hemorrhagic Telangiectasia and Vascular Malformations Gene Panel Patient Information
4. If not ordering electronically, complete, print, and send a Cardiovascular Test Request Form (T724) with the specimen.
Secondary ID
617295Useful For
Providing a genetic evaluation for patients with a personal or family history suggestive of hereditary hemorrhagic telangiectasia (HHT), cerebral cavernous malformation (CCM), capillary malformation-arteriovenous malformation syndrome (CV-AVM), or other hereditary vascular malformation syndromes of germline origin
Establishing a diagnosis of HHT, CCM, CM-AVM, or other hereditary vascular malformation syndromes of germline origin
Method Name
Sequence Capture and Targeted Next-Generation Sequencing followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing
Reporting Name
HHT and Vascular Gene PanelSpecimen Type
VariesSpecimen Minimum Volume
1 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Varies | Varies |
Reject Due To
All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.Clinical Information
Hereditary vascular malformation syndromes include a group of genetic conditions characterized by abnormal blood vessel development. These syndromes can be of germline or somatic origin. This gene panel is restricted to analysis of genes associated with vascular malformation syndromes of germline origin.
Hereditary hemorrhagic telangiectasia (HHT), also known as Osler-Weber-Rendu syndrome, is an autosomal dominant vascular dysplasia characterized by the presence of arteriovenous malformations (AVM) of the skin, mucosa, and viscera. Small AVM, or telangiectasias, develop predominantly on the face, oral cavity, and hands, and spontaneous, recurrent epistaxis (nose bleeding) is a common presenting sign.(1) HHT has an estimated prevalence of 1:5000 and is primarily caused by heterozygous, disease-causing variants in the ACVRL1 and ENG genes. Rarely, HHT can be caused by disease-causing variants in the GDF2 gene (also known as BMP9). Additionally, SMAD4 disease-causing variants cause autosomal dominant juvenile polyposis/HHT syndrome, which includes features of juvenile polyposis syndrome and HHT.(2) An overlapping pulmonary arterial hypertension and HHT phenotype have also been reported in association with the BMPR2 gene.(3,4)
Familial cerebral cavernous malformation (CCM) is an autosomal dominant condition characterized by structurally abnormal capillaries in the central nervous system leading to an increased risk of cerebral hemorrhage.(5) The estimated prevalence of familial CCM ranges from 1:3300 to 1:10,000,(5) and the condition displays age-related penetrance with up to 50% of individuals remaining symptom free throughout their life.(5,6) Disease-causing variants in three genes have been associated with familial CCM: KRIT1, CCM2, and PDCD10.
Capillary malformation-arteriovenous malformation syndrome (CM-AVM) is an autosomal dominant condition primarily characterized by capillary malformations localized to the dermis of the face and limbs, AVM or arteriovenous fistulas of the skin, muscle, bone, spine, and brain, and Parkes Weber syndrome.(6) The prevalence of CM-AVM has been estimated in Northern European cohorts at approximately 1:100,000, with penetrance estimated at 90% to 99%.(6) Approximately 60% of cases of CM-AVM can be attributed to disease-causing variants in the EPHB4 and RASA1 genes. The genetic etiology remains unknown in approximately 40% of cases.(6)
Hereditary glomuvenous malformation is a rare autosomal dominant condition characterized by multiple venous malformations within the glomerulus of the kidney. The condition is associated with germline disease-causing variants in the GLMN gene. However, it is thought that a second, somatic (acquired) variant on the second allele, or acquired uniparental disomy, is required for the development of venous malformations.(7,8)
Multiple cutaneous and mucosal venous malformations (also known as cutaneomucosal venous malformation: VMCM) is an autosomal dominant condition characterized by small multifocal cutaneous and mucosal vascular malformations that typically present at birth.(9) These lesions are usually asymptomatic but may become painful if they are large enough to impact the underlying muscle tissue. The prevalence of this condition is unknown but thought to be rare. VMCM is associated with disease-causing variants in the TEK gene, and penetrance is estimated at 90% in individuals with a known genetic etiology.(9)
Reference Values
An interpretive report will be provided.
Interpretation
All detected variants are evaluated according to American College of Medical Genetics and Genomics recommendations.(10) Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.
Method Description
Next-generation sequencing (NGS) and Sanger sequencing are performed to test for the presence of variants in coding regions and intron/exon boundaries of the genes analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least 99% of the bases are covered at a read depth over 30X. Sensitivity is estimated at above 99% for single nucleotide variants, above 94% for deletions-insertions (delins) less than 40 base pairs (bp), above 95% for deletions up to 75 bp and insertions up to 47 bp. NGS and a polymerase chain reaction-based quantitative method is performed to test for the presence of deletions and duplications in the genes analyzed.
There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. See Targeted Genes and Methodology Details for Hereditary Hemorrhagic Telangiectasia and Vascular Malformations Gene Panel for details regarding the targeted genes analyzed for each test and specific gene regions not routinely covered.(Unpublished Mayo method)
Confirmation of select reportable variants may be performed by alternate methodologies based on internal laboratory criteria.
Genes analyzed: ACVRL1, BMPR2, CCM2, ENG, EPHB4, GDF2, GLMN, KRIT1, PDCD10, RASA1, SMAD4, and TEK
Day(s) Performed
Varies
Performing Laboratory
Mayo Clinic Laboratories in RochesterTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
81406 x3
81479
81479 (if appropriate for government payers)
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
HHTGG | HHT and Vascular Gene Panel | 51966-0 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
617296 | Test Description | 62364-5 |
617297 | Specimen | 31208-2 |
617298 | Source | 31208-2 |
617299 | Result Summary | 50397-9 |
617300 | Result | 82939-0 |
617301 | Interpretation | 69047-9 |
617302 | Additional Results | 82939-0 |
617303 | Resources | 99622-3 |
617304 | Additional Information | 48767-8 |
617305 | Method | 85069-3 |
617306 | Genes Analyzed | 48018-6 |
617307 | Disclaimer | 62364-5 |
617308 | Released By | 18771-6 |
Prior Authorization
Insurance preauthorization is available for this testing; forms are available.
Patient financial assistance may be available to those who qualify. Patients who receive a bill from Mayo Clinic Laboratories will receive information on eligibility and how to apply.
Special Instructions
- Informed Consent for Genetic Testing
- Informed Consent for Genetic Testing (Spanish)
- Hereditary Hemorrhagic Telangiectasia and Vascular Malformations Gene Panel Patient Information
- Targeted Genes and Methodology Details for Hereditary Hemorrhagic Telangiectasia and Vascular Malformations Gene Panel
- Hereditary Hemorrhagic Telangiectasia and Vascular Gene Panel (HHTGG) Prior Authorization Ordering Instructions